Low resource end-to-end spoken language understanding with capsule networks

نویسندگان

چکیده

Designing a Spoken Language Understanding (SLU) system for command-and-control applications is challenging. Both Automatic Speech Recognition and Natural are language application dependent to great extent. Even with lot of design effort, users often still have know what say the it do they want. We propose use an end-to-end SLU that maps speech directly semantics can be trained by user through demonstrations. The teach new command uttering subsequently demonstrating its meaning alternative interface. will learn mapping from spoken task. dependency on also allows different languages non-standard or impaired as valid inputs. Teaching requires effort user, so crucial learns quickly. In this paper we capsule networks task, which believed data efficient. discuss two architectures using networks. analyse their performance compare them baseline systems, one based Non-negative Matrix Factorisation (NMF) has been successful task encoder-decoder approach. show in most cases network performs better than systems. Furthermore, demonstrate versatility architecture inferring speaker identity user’s word choice multitask learning.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards end-to-end spoken language understanding

Spoken language understanding system is traditionally designed as a pipeline of a number of components. First, the audio signal is processed by an automatic speech recognizer for transcription or n-best hypotheses. With the recognition results, a natural language understanding system classifies the text to structured data as domain, intent and slots for downstreaming consumers, such as dialog s...

متن کامل

End-to-End Memory Networks with Knowledge Carryover for Multi-Turn Spoken Language Understanding

Spoken language understanding (SLU) is a core component of a spoken dialogue system. In the traditional architecture of dialogue systems, the SLU component treats each utterance independent of each other, and then the following components aggregate the multi-turn information in the separate phases. However, there are two challenges: 1) errors from previous turns may be propagated and then degra...

متن کامل

Comparison of nerve repair with end to end, end to side with window and end to side without window methods in lower extremity of rat

  Abstract   Background : Although, different studies on end-to-side nerve repair, results are controversial. The importance of this method in case is unavailability of proximal nerve. In this method, donor nerves also remain intact and without injury. In compare to other classic procedures, end-to-side repair is not much time consuming and needs less dissection. Overall, the previous studies i...

متن کامل

Towards End-to-End Spoken Dialogue Systems with Turn Embeddings

Training task-oriented dialogue systems requires significant amount of manual effort and integration of many independently built components; moreover, the pipeline is prone to errorpropagation. End-to-end training has been proposed to overcome these problems by training the whole system over the utterances of both dialogue parties. In this paper we present an end-to-end spoken dialogue system a...

متن کامل

End-to-end esophagojejunostomy versus standard end-to-side esophagojejunostomy: which one is preferable?

 Abstract Background: End-to-side esophagojejunostomy has almost always been associated with some degree of dysphagia. To overcome this complication we decided to perform an end-to-end anastomosis and compare it with end-to-side Roux-en-Y esophagojejunostomy. Methods: In this prospective study, between 1998 and 2005, 71 patients with a diagnosis of gastric adenocarcinoma underwent total gastrec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Speech & Language

سال: 2021

ISSN: ['1095-8363', '0885-2308']

DOI: https://doi.org/10.1016/j.csl.2020.101142